Last updated: 2025-07-29

Checks: 7 0

Knit directory: SCHEDULING/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20221107) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bd4637a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/patch_selection.png
    Ignored:    analysis/patch_selection_8.png
    Ignored:    analysis/patch_selection_avg.png
    Ignored:    analysis/site_libs/

Untracked files:
    Untracked:  analysis/Notes.txt
    Untracked:  analysis/additional_scripts.R
    Untracked:  analysis/analysis_2025_deadlines.Rmd
    Untracked:  analysis/analysis_2025_dynamicNoise_fixed.Rmd
    Untracked:  analysis/analysis_exp10_preemption.Rmd
    Untracked:  analysis/analysis_exp10_preemption1and2.Rmd
    Untracked:  analysis/analysis_exp10b_preemption-pareto.Rmd
    Untracked:  analysis/analysis_exp11_facesInNoise.Rmd
    Untracked:  analysis/analysis_exp11_facesInNoise_EW.Rmd
    Untracked:  analysis/analysis_exp11_facesInNoise_EW_v2.Rmd
    Untracked:  analysis/analysis_exp12_variability.Rmd
    Untracked:  analysis/analysis_exp12_variability_cynthia.Rmd
    Untracked:  analysis/analysis_exp12_variability_cynthia_update.Rmd
    Untracked:  analysis/analysis_exp13_preemption.Rmd
    Untracked:  analysis/analysis_exp14_ASD_individual_differences.Rmd
    Untracked:  analysis/analysis_exp9_preselection.Rmd
    Untracked:  analysis/analysis_exp9_preselection1and2.Rmd
    Untracked:  analysis/analysis_exp9_select-then-complete.Rmd
    Untracked:  analysis/anovaData/
    Untracked:  analysis/archive/
    Untracked:  analysis/correlation_test.m
    Untracked:  analysis/fd_pl.rds
    Untracked:  analysis/fu_pl.rds
    Untracked:  analysis/instructions_for_honours_students.txt
    Untracked:  analysis/joyPlot.m
    Untracked:  analysis/joyPlot.zip
    Untracked:  analysis/joyPlot/
    Untracked:  analysis/loadData.m
    Untracked:  analysis/mstrfind.m
    Untracked:  analysis/plotDistanceByTrials.m
    Untracked:  analysis/prereg/
    Untracked:  analysis/reward rate analysis.docx
    Untracked:  analysis/rewardRate.jpg
    Untracked:  analysis/scheduling_analysis_functions.R
    Untracked:  analysis/temp/
    Untracked:  analysis/toAnalyse/
    Untracked:  analysis/wflow_code_string.txt
    Untracked:  code/AUTSIMQ/
    Untracked:  code/DYNAMICNOISE/
    Untracked:  code/FACESINNOISE/
    Untracked:  code/Notes on how the scheduling jsPsych code works.txt
    Untracked:  code/PREEMPT/
    Untracked:  code/PREPLAN/
    Untracked:  code/SCHEDULEPIX/
    Untracked:  code/SCHEDULEPIX_UON/
    Untracked:  code/SCHEDULERDK/
    Untracked:  code/SCHEDULERDK_UON/
    Untracked:  code/SCHEDULE_REWARD/
    Untracked:  code/SCHEDULE_TYPING/
    Untracked:  code/SMALL_N_LETTERNOISE/
    Untracked:  code/TRAIN_PREEMPT/
    Untracked:  code/TRAIN_VARYING_DEADLINES/
    Untracked:  code/autism_quotient.txt
    Untracked:  data/2020_exp1_rdk_data.csv
    Untracked:  data/2020_exp2_rdk_data.csv
    Untracked:  data/2021_exp2b_rdk_data_avgtime.csv
    Untracked:  data/2021_exp3a_rdk_data_dynamic.csv
    Untracked:  data/2021_exp3b_rdk_data_dynamic_highlight.csv
    Untracked:  data/2021_exp3c_rdk_data_dynamic_shortdotlife.csv
    Untracked:  data/2023-exp10-preemption-pareto.csv
    Untracked:  data/2023-exp10-preemption-selections.csv
    Untracked:  data/2023-exp10-preemption.csv
    Untracked:  data/2023-exp11-facesInNoise-unlabelledCondition.csv
    Untracked:  data/2023-exp11-facesInNoise.csv
    Untracked:  data/2023-exp9-preplan.csv
    Untracked:  data/2023-exp9-select-then-complete.csv
    Untracked:  data/2023_AQdata.csv
    Untracked:  data/2024-exp12-variability.csv
    Untracked:  data/2024-exp12-variability_v2.csv
    Untracked:  data/2024-exp12-variability_v3.csv
    Untracked:  data/2024-exp13-preemption.csv
    Untracked:  data/2024-exp13-preemption_v2.csv
    Untracked:  data/2024-scheduling-data.csv
    Untracked:  data/2024_data_rdk_select_first_AQcorrelation_update.csv
    Untracked:  data/2024_data_typing_train_variability.csv
    Untracked:  data/2025_data_dynamic_noise_fixed_locations.csv
    Untracked:  data/2025_data_typing_train_deadlines_exp1rates.csv
    Untracked:  data/2025_data_typing_train_variability_fulldataset.csv
    Untracked:  data/ASRSscoring.csv
    Untracked:  data/OLIFEscoring.csv
    Untracked:  data/OLIFEscoring_v0.csv
    Untracked:  data/POLYscoring.csv
    Untracked:  data/SQL query.txt
    Untracked:  data/archive/
    Untracked:  data/create_database.sql
    Untracked:  data/dataToAnalyse/
    Untracked:  data/data_dictionary_deadlines.csv
    Untracked:  data/data_dictionary_dynamic_noise.csv
    Untracked:  data/data_dictionary_facesInNoise.csv
    Untracked:  data/data_dictionary_preemption.csv
    Untracked:  data/data_dictionary_preplan.csv
    Untracked:  data/data_dictionary_select_then_complete.csv
    Untracked:  data/data_dictionary_variability.csv
    Untracked:  data/exp6a_typing_exponential.xlsx
    Untracked:  data/exp6b_typing_linear.xlsx
    Untracked:  data/exp8a_typing_no_reward_data_selections.csv
    Untracked:  data/rawdata_incEmails/
    Untracked:  data/selections/
    Untracked:  data/sona data/
    Untracked:  data/summaryFiles/
    Untracked:  data/temp_AQcorrelationReplication/
    Untracked:  spatial_pdist.Rdata

Unstaged changes:
    Modified:   analysis/analysis_exp1_labelled_nodelay.Rmd
    Modified:   analysis/analysis_exp7e_rdk_reward_points.Rmd
    Modified:   analysis/analysis_exp8a_typing_no_reward.Rmd
    Deleted:    analysis/prereg.Rmd
    Deleted:    analysis/prereg_v2.Rmd
    Deleted:    analysis/prereg_v3.Rmd
    Deleted:    analysis/prereg_v6_AQcorrelation.Rmd
    Modified:   data/README.md
    Modified:   data/data_dictionary.csv
    Modified:   data/data_dictionary_avgTime.csv
    Modified:   data/data_dictionary_ruby.csv
    Modified:   data/data_dictionary_shortdotlife.csv
    Deleted:    data/exp1_rdk_data.csv
    Deleted:    data/exp2_rdk_data.csv
    Deleted:    data/exp2b_rdk_data_avgtime.csv
    Deleted:    data/exp3a_rdk_data_dynamic.csv
    Deleted:    data/exp3b_rdk_data_dynamic_highlight.csv
    Deleted:    data/exp3c_rdk_data_dynamic_shortdotlife.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_exp3c_rdk_dynamic_delay_shortdotlife.Rmd) and HTML (docs/analysis_exp3c_rdk_dynamic_delay_shortdotlife.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bd4637a knowlabUnimelb 2025-07-29 Update analysis code to use shared file repo
html 2e6ecdf knowlabUnimelb 2022-11-09 Build site.
Rmd 67e1aac knowlabUnimelb 2022-11-09 Publish data and analysis files

Ruby Steinberg1, Ami Eidels2, and Daniel R. Little1

1 The University of Melbourne, 2 The University of Newcastle

Method

Participants

Design

Data Cleaning

Subjects completed the experiment by clicking a link with the uniquely generated id code. Subjects were able to use the link multiple times; further, subjects were able to exit the experiment at any time. Consequently, the datafile contains partially completed data for some subjects which needed to be identified and removed.

Data Analysis

We first summarize performance by answering the following questions:

Task completions

  • How many tasks are completed on average?

RDK performance

We next analysed performance on the RDK discriminations. We then asked:

  • What was the average completion time and accuracy of the easy, medium, hard, and very hard tasks?

Version Author Date
2e6ecdf knowlabUnimelb 2022-11-09

We further broke down RTs by condition, deadline, and difficulty.

Reward Rate

name[none] ss[none] df[none] ms[none] F[none] p[none] partEta[none]
“Phase” Phase 59.039 1 59.039 80.539 0.000 0.514
[“Phase”,“condition”] Phase:condition 0.035 1 0.035 0.048 0.827 0.001
[“Phase”,“condition”,“.RES”] Residual 55.712 76 0.733 NA NA NA
“Difficulty” Difficulty 35.793 3 11.931 52.289 0.000 0.408
[“Difficulty”,“condition”] Difficulty:condition 0.754 3 0.251 1.101 0.350 0.014
[“Difficulty”,“condition”,“.RES”] Residual 52.023 228 0.228 NA NA NA
[“Phase”,“Difficulty”] Phase:Difficulty 2.653 3 0.884 5.139 0.002 0.063
[“Phase”,“Difficulty”,“condition”] Phase:Difficulty:condition 0.812 3 0.271 1.572 0.197 0.020
[“Phase”,“Difficulty”,“condition”,“.RES”] Residual 39.238 228 0.172 NA NA NA
name ss df ms F p partEta
“condition” condition 0.196 1 0.196 0.229 0.633 0.003
“Residual” Residual 65.024 76 0.856 NA NA NA

Optimality in each condition

  • What is the proportion of easy, medium, hard, and very hard tasks selected first, second, third or fourth?

  • Do the marginal distributions differ from uniformity?

We tested whether the marginal distributions were different from uniformally random selection using the fact that the mean rank is distributed according to a \(\chi^2\) distribution with the following test-statistic: \[\chi^2 = \frac{12N}{k(k+1)}\sum_{j=1}^k \left(m_j - \frac{k+1}{2} \right)^2\] see (Marden, 1995).

Chi2 test of uniformity
condition phase chi2 df p
fixed_moving_shortdotlife untimed 9.75 3 0.01
fixed_moving_shortdotlife deadline 25.51 3 0.00
random_moving_shortdotlife untimed 7.33 3 0.03
random_moving_shortdotlife deadline 9.32 3 0.01

We compared the location conditions and phases using chi-2 analysis.

  • How optimal were responses?

Stability of selections

Selection Choice RTs

Mean RTs for each scheduling selection
condition phase mrt_sel1 mrt_sel2 mrt_sel3 mrt_sel4
fixed_moving_shortdotlife deadline 690.29 719.05 696.63 570.98
fixed_moving_shortdotlife untimed 1578.95 1285.66 1218.24 1236.19
random_moving_shortdotlife deadline 790.40 825.50 736.52 559.88
random_moving_shortdotlife untimed 1776.43 1438.74 1252.29 1276.20

REPEATED MEASURES ANOVA

Within Subjects Effects
─────────────────────────────────────────────────────────────────────────────────────────────────────────────── Sum of Squares df Mean Square F p η²-p
─────────────────────────────────────────────────────────────────────────────────────────────────────────────── Phase 7.429918e+7 1 7.429918e+7 231.0252920 < .0000001 0.7524634
Phase:condition 96868.91 1 96868.91 0.3012034 0.5847378 0.0039476
Residual 2.444208e+7 76 321606.28
Selection 8166318.31 3 2722106.10 30.8536450 < .0000001 0.2887468
Selection:condition 538616.71 3 179538.90 2.0349793 0.1097859 0.0260778
Residual 2.011562e+7 228 88226.40
Phase:Selection 3987223.62 3 1329074.54 17.0963411 < .0000001 0.1836414
Phase:Selection:condition 72319.05 3 24106.35 0.3100882 0.8180852 0.0040635
Residual 1.772479e+7 228 77740.29
─────────────────────────────────────────────────────────────────────────────────────────────────────────────── Note. Type 3 Sums of Squares

Between Subjects Effects
────────────────────────────────────────────────────────────────────────────────────────── Sum of Squares df Mean Square F p η²-p
────────────────────────────────────────────────────────────────────────────────────────── condition 1130408 1 1130408.5 2.113166 0.1501540 0.0270526
Residual 4.065514e+7 76 534936.0
────────────────────────────────────────────────────────────────────────────────────────── Note. Type 3 Sums of Squares

ASSUMPTIONS

Tests of Sphericity
─────────────────────────────────────────────────────────────────────────────────────────── Mauchly’s W p Greenhouse-Geisser ε Huynh-Feldt ε
─────────────────────────────────────────────────────────────────────────────────────────── Phase 1.0000000 NaN ᵃ 1.0000000 1.0000000
Selection 0.3617133 < .0000001 0.6039606 0.6178657
Phase:Selection 0.5244773 < .0000001 0.7022065 0.7227066
─────────────────────────────────────────────────────────────────────────────────────────── ᵃ The repeated measures has only two levels. The assumption of sphericity is always met when the repeated measures has only two levels.

Homogeneity of Variances Test (Levene’s)
───────────────────────────────────────────────────────── F df1 df2 p
───────────────────────────────────────────────────────── rt1_untimed 1.41914480 1 76 0.2372513
rt2_untimed 0.97399516 1 76 0.3268174
rt3_untimed 0.84632363 1 76 0.3605053
rt4_untimed 0.06239663 1 76 0.8034212
rt1_deadline 4.97280100 1 76 0.0287010
rt2_deadline 0.79821624 1 76 0.3744477
rt3_deadline 0.24128684 1 76 0.6246938
rt4_deadline 0.04943231 1 76 0.8246505
─────────────────────────────────────────────────────────

Selection model

We can treat each task selection as a probabilistic choice given by a Luce’s choice rule (Luce, 1959), where each task is represented by some strength, \(\nu\). The probability of selecting task \(i_j\) from set \(S = \{i_1, i_2, ..., i_J \}\), where J is the number of tasks, is:

\[p\left(i_j |S \right) = \frac{\nu_{i_j}}{\sum_{i \in S} \nu_{i}}. \]

Plackett (1975) generalised this model to explain the distribution over a sequence of choices (i.e., ranks). In this case, after each choice, the choice set is reduce by one (i.e., sampling without replacement). This probability of observing a specific selection order, \(i_1 \succ ... \succ i_J\) is:

\[p\left(i_j |A \right) = \prod_{j=1}^J \frac{\nu_{i_j}}{\sum_{i \in A_j} \nu_{i}}, \]

where \(A_j\) is the current choice set.


sessionInfo()
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=English_Australia.utf8  LC_CTYPE=English_Australia.utf8   
[3] LC_MONETARY=English_Australia.utf8 LC_NUMERIC=C                      
[5] LC_TIME=English_Australia.utf8    

time zone: Australia/Sydney
tzcode source: internal

attached base packages:
[1] stats4    grid      stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] statmod_1.5.0     betareg_3.2-0     jmv_2.4.9         pmr_1.2.5.1      
 [5] jpeg_0.1-10       rstatix_0.7.2     lmerTest_3.1-3    lme4_1.1-34      
 [9] Matrix_1.6-1.1    png_0.1-8         reshape2_1.4.4    knitr_1.44       
[13] english_1.2-6     gtools_3.9.4      DescTools_0.99.50 lubridate_1.9.3  
[17] forcats_1.0.0     stringr_1.5.0     dplyr_1.1.3       purrr_1.0.2      
[21] readr_2.1.4       tidyr_1.3.0       tibble_3.2.1      ggplot2_3.4.3    
[25] tidyverse_2.0.0   workflowr_1.7.1  

loaded via a namespace (and not attached):
 [1] gld_2.6.6           sandwich_3.0-2      readxl_1.4.3       
 [4] rlang_1.1.1         magrittr_2.0.3      multcomp_1.4-25    
 [7] git2r_0.32.0        e1071_1.7-13        compiler_4.3.1     
[10] flexmix_2.3-19      getPass_0.2-2       callr_3.7.3        
[13] vctrs_0.6.3         pkgconfig_2.0.3     fastmap_1.1.1      
[16] backports_1.4.1     labeling_0.4.3      utf8_1.2.3         
[19] promises_1.2.1      rmarkdown_2.25      tzdb_0.4.0         
[22] ps_1.7.5            nloptr_2.0.3        modeltools_0.2-23  
[25] xfun_0.40           cachem_1.0.8        jsonlite_1.8.7     
[28] later_1.3.1         afex_1.3-0          parallel_4.3.1     
[31] broom_1.0.5         R6_2.5.1            RColorBrewer_1.1-3 
[34] bslib_0.5.1         stringi_1.7.12      car_3.1-2          
[37] boot_1.3-28.1       estimability_1.4.1  lmtest_0.9-40      
[40] jquerylib_0.1.4     cellranger_1.1.0    numDeriv_2016.8-1.1
[43] Rcpp_1.0.11         zoo_1.8-12          base64enc_0.1-3    
[46] nnet_7.3-19         httpuv_1.6.11       splines_4.3.1      
[49] timechange_0.2.0    tidyselect_1.2.0    rstudioapi_0.15.0  
[52] abind_1.4-5         yaml_2.3.7          codetools_0.2-19   
[55] processx_3.8.2      lattice_0.21-8      plyr_1.8.9         
[58] withr_2.5.1         coda_0.19-4         evaluate_0.22      
[61] survival_3.5-5      proxy_0.4-27        pillar_1.9.0       
[64] carData_3.0-5       whisker_0.4.1       generics_0.1.3     
[67] rprojroot_2.0.3     hms_1.1.3           munsell_0.5.0      
[70] scales_1.2.1        rootSolve_1.8.2.4   minqa_1.2.6        
[73] xtable_1.8-4        jmvcore_2.4.7       class_7.3-22       
[76] glue_1.6.2          emmeans_1.8.8       lmom_3.0           
[79] tools_4.3.1         data.table_1.14.8   Exact_3.2          
[82] fs_1.6.3            mvtnorm_1.2-3       colorspace_2.1-0   
[85] nlme_3.1-162        Formula_1.2-5       cli_3.6.1          
[88] fansi_1.0.4         expm_0.999-7        gtable_0.3.4       
[91] sass_0.4.7          digest_0.6.33       TH.data_1.1-2      
[94] farver_2.1.1        htmltools_0.5.6     lifecycle_1.0.3    
[97] httr_1.4.7          MASS_7.3-60